CSS IMPACT-A Cold Gal # **Construction Supply Specialists Pty Ltd** Chemwatch: 5445-14 Version No: 3.1 Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements Chemwatch Hazard Alert Code: 4 Initial Date: 04/12/2020 Revision Date: 23/12/2022 Print Date: 10/09/2025 L.GHS.AUS.EN.E #### SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | | |-------------------------------|-----------------------| | Product name | CSS IMPACT-A Cold Gal | | Chemical Name | Not Applicable | | Synonyms | Not Available | | Proper shipping name | AEROSOLS | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Application is by spray atomisation from a hand held aerosol pack Use according to manufacturer's directions. #### Details of the manufacturer or importer of the safety data sheet | Registered company name | Construction Supply Specialists Pty Ltd | |-------------------------|---| | Address | 17 Lakeside Drive Broadmeadows VIC 3047 Australia | | Telephone | +61 3 93574228 | | Fax | +61 3 93574229 | | Website | www.constructionsupply.com.au | | Email | glenn@cssgroup.com.au | #### Emergency telephone number | Association / Organisation | Poisons Information Centre | |-------------------------------------|----------------------------| | Emergency telephone number(s) | 13 11 26 (Australia) | | Other emergency telephone number(s) | Not Available | #### **SECTION 2 Hazards identification** #### Classification of the substance or mixture | Poisons Schedule | Not Applicable | | |--------------------|--|--| | Classification [1] | Aerosols, Hazard Category 1, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Hazardous to the Aquatic Environment Acute Hazard Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 1 | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | #### Label elements Hazard pictogram(s) Signal word Danger # Hazard statement(s) | H222+H229 | tremely flammable aerosol. Pressurized container: may burst if heated. | | |-----------|--|--| | H315 | Causes skin irritation. | | | H319 | Causes serious eye irritation. | | | H336 | May cause drowsiness or dizziness. | | | H402 | Harmful to aquatic life. | | | H410 | Very toxic to aquatic life with long lasting effects. | | | AUH044 | Risk of explosion if heated under confinement. | | #### **CSS IMPACT-A Cold Gal** Initial Date: **04/12/2020**Revision Date: **23/12/2022**Print Date: **10/09/2025** | B040 | | |------|--| | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | P211 | Do not spray on an open flame or other ignition source. | | P251 | Do not pierce or burn, even after use. | | P271 | Use only outdoors or in a well-ventilated area. | | P261 | Avoid breathing mist/vapours/spray. | | P273 | Avoid release to the environment. | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P264 | Wash all exposed external body areas thoroughly after handling. | #### Precautionary statement(s) Response | P305+P351+P338 | F IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | |----------------|---|--| | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | | P337+P313 | e irritation persists: Get medical advice/attention. | | | P391 | lect spillage. | | | P302+P352 | ON SKIN: Wash with plenty of water and soap. | | | P304+P340 | F INHALED: Remove person to fresh air and keep comfortable for breathing. | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | #### Precautionary statement(s) Storage | P405 | Store locked up. | | |-----------|--|--| | P410+P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. | | | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | | #### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. No further product hazard information. #### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures ### Mixtures | CAS No | %[weight] | Name | |---------------|---|--| | 1330-20-7 | 20-30 | xylene | | 7440-66-6 | 20-30 | zinc | | 67-64-1 | 10-15 | acetone | | Not Available | balance | Ingredients determined not to be hazardous | | 115-10-6 | 10-30 | dimethyl ether | | Legend: | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | #### **SECTION 4 First aid measures** #### Description of first aid measures | Eye Contact | If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--| | Skin Contact | If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. | | Inhalation | If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bagvalve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | Avoid giving milk or oils. Avoid giving alcohol. Not considered a normal route of entry. | # Indication of any immediate medical attention and special treatment needed Treat symptomatically. for lower alkyl ethers: Chemwatch: 5445-14 Page 3 of 13 Version No: 3.1 #### **CSS IMPACT-A Cold Gal** Initial Date: 04/12/2020 Revision Date: 23/12/2022 Print Date: 10/09/2025 #### BASIC TREATMENT - Establish a patent airway with suction where necessary. - Watch for signs of respiratory insufficiency and assist ventilation as necessary - Administer oxygen by non-rebreather mask at 10 to 15 l/min. - A low-stimulus environment must be maintained. - Monitor and treat, where necessary, for shock. - Anticipate and treat, where necessary, for seizures. - DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool. #### ADVANCED TREATMENT - · Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - Positive-pressure ventilation using a bag-valve mask might be of use. - Monitor and treat, where necessary, for arrhythmias. - Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - Drug therapy should be considered for pulmonary oedema. - Hypotension without signs of hypovolaemia may require vasopressors. - Treat seizures with diazepam. - Proparacaine hydrochloride should be used to assist eye irrigation. #### **EMERGENCY DEPARTMENT** - Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar
gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph. - Ethers may produce anion gap acidosis. Hyperventilation and bicarbonate therapy might be indicated. Haemodialysis might be considered in patients with impaired renal function. - Consult a toxicologist as necessary BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 - Absorption of zinc compounds occurs in the small intestine. - The metal is heavily protein bound. - Elimination results primarily from faecal excretion. - The usual measures for decontamination (Ipecac Syrup, lavage, charcoal or cathartics) may be administered, although patients usually have sufficient vomiting not to require - ▶ CaNa2EDTA has been used successfully to normalise zinc levels and is the agent of choice. [Ellenhorn and Barceloux: Medical Toxicology] For acute or short term repeated exposures to xylene: - Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - Pulmonary absorption is rapid with about 60-65% retained at rest. - Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice **BIOLOGICAL EXPOSURE INDEX - BEI** These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Index Methylhippu-ric acids in urine 1.5 gm/gm creatinine 2 mg/min Sampling Time End of shift Last 4 hrs of shift Comments **SECTION 5 Firefighting measures** #### **Extinguishing media** SMALL FIRE: ▶ Water spray, dry chemical or CO2 LARGE FIRE: Water spray or fog. Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result # Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. #### Fire Fighting - Use water delivered as a fine spray to control fire and cool adjacent area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire - Equipment should be thoroughly decontaminated after use. #### Fire/Explosion Hazard - Liquid and vapour are highly flammable. - Severe fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air. - Severe explosion hazard, in the form of vapour, when exposed to flame or spark. - Vapour may travel a considerable distance to source of ignition. - Heating may cause expansion or decomposition with violent container rupture. - Aerosol cans may explode on exposure to naked flames. - Rupturing containers may rocket and scatter burning materials. Chemwatch: **5445-14**Page **4** of **13**Version No: **3.1**CSS IMPACT-A C #### **CSS IMPACT-A Cold Gal** Initial Date: **04/12/2020** Revision Date: **23/12/2022** # **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Minor Spills | Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. | |--------------|---| | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safety. Collect residues and seal in labelled drums for disposal. | Personal Protective Equipment advice is contained in Section 8 of the SDS. # SECTION 7 Handling and storage | Precautions for safe handling | | |-------------------------------|---| | Safe handling | Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. DO NOT incinerate or puncture aerosol cans. DO NOT spray directly on humans, exposed food or food utensils. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. | | Other information | Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Keep containers securely sealed. Contents under pressure. Store away from incompatible materials. Store in a cool, dry, well ventilated area. Avoid storage at temperatures higher than 40 deg C. Store in an upright position. Protect containers against physical damage. Check regularly for spills and leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | #### Conditions
for safe storage, including any incompatibilities | Suitable container | Aerosol dispenser. Check that containers are clearly labelled. | |-------------------------|---| | Storage incompatibility | ► Avoid reaction with oxidising agents | #### SECTION 8 Exposure controls / personal protection #### **Control parameters** Initial Date: **04/12/2020** Revision Date: **23/12/2022** Print Date: **10/09/2025** #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|----------------|--------------------------------|-------------------------|--------------------------|---------------|---------------| | Australia Exposure Standards | xylene | Xylene (o-, m-, p-
isomers) | 80 ppm / 350 mg/m3 | 655 mg/m3 / 150 ppm | Not Available | Not Available | | Australia Exposure Standards | acetone | Acetone | 500 ppm / 1185
mg/m3 | 2375 mg/m3 / 1000
ppm | Not Available | Not Available | | Australia Exposure Standards | dimethyl ether | Dimethyl ether | 400 ppm / 760
mg/m3 | 950 mg/m3 / 500 ppm | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |----------------|---------------|---------------| | xylene | 900 ppm | Not Available | | zinc | Not Available | Not Available | | acetone | 2,500 ppm | Not Available | | dimethyl ether | Not Available | Not Available | #### MATERIAL DATA #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Speed: | |---|----------------------------| | aerosols, (released at low velocity into zone of active generation) | 0.5-1 m/s | | direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Individual protection measures, such as personal protective equipment # Eye and face protection - ▶ No special equipment for minor exposure i.e. when handling small quantities. - OTHERWISE: For potentially moderate or heavy exposures: Sefety places with side shields. - Safety glasses with side shields. - ▶ NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them. #### Skin protection #### See Hand protection below # ► No special equipment needed when handling small quantities. # Hands/feet protection - OTHERWISE:For potentially moderate exposures: - Wear general protective gloves, eg. light weight rubber gloves. - For potentially heavy exposures: - ▶ Wear chemical protective gloves, eg. PVC. and safety footwear. #### Body protection #### See Other protection below #### OTH No special equipment needed when handling small quantities. **OTHERWISE:** #### Other protection - Overalls. - Skin cleansing cream. - Eyewash unit. - Do not spray on hot surfaces #### Recommended material(s) ## GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". #### Respiratory protection Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. #### **CSS IMPACT-A Cold Gal** Initial Date: 04/12/2020 Revision Date: 23/12/2022 Print Date: 10/09/2025 The effect(s) of the following substance(s) are taken into account in the computergenerated selection: CSS IMPACT-A Cold Gal Version No: 3.1 | Material | CPI | |-------------------|-----| | BUTYL | С | | BUTYL/NEOPRENE | С | | CPE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | PVDC/PE/PVDC | С | | SARANEX-23 | С | | SARANEX-23 2-PLY | С | | TEFLON | С | | VITON | С | | VITON/NEOPRENE | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - #### Ansell Glove Selection | Glove — In order of recommendation | |------------------------------------| | AlphaTec® 15-554 | | AlphaTec® 38-612 | | BioClean™ Ultimate BUPS | | AlphaTec® 53-001 | | AlphaTec® 58-005 | | BioClean™ Emerald BENS | | BioClean™ Extra BLAS | | BioClean™ Fusion (Sterile) S-BFAP | | BioClean™ N-Plus BNPS | | MICROFLEX® MidKnight® XTRA 93-862 | The suggested gloves for use should be confirmed with the glove supplier. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 10 x ES | AX-AUS / Class
1 | - | AX-PAPR-AUS /
Class 1 | | up to 50 x ES | Air-line* | - | - | | up to 100 x ES | - | AX-3 | - | | 100+ x ES | - | Air-line** | - | * - Continuous-flow; ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals. #### **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | information on basic physical and chemical properties | | | | |---|--|---|----------------| | Appearance | Grey highly flammable liquid; does not mix with water. | | | | Physical state | Liquid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature
(°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | ^{*} Where the glove is to be used on a short term, casual or infrequent basis,
factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Page 7 of 13 #### **CSS IMPACT-A Cold Gal** Initial Date: **04/12/2020** Revision Date: **23/12/2022** Print Date: **10/09/2025** | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | |---|---------------|---|----------------| | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not Available | | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | Enclosed Space Ignition
Time Equivalent (s/m3) | Not Available | Enclosed Space Ignition Deflagration Density (g/m3) | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** #### Information on toxicological effects | oao o toxoo.og.oa. o. | | |---|--| | a) Acute Toxicity | Based on available data, the classification criteria are not met. | | b) Skin Irritation/Corrosion | There is sufficient evidence to classify this material as skin corrosive or irritating. | | c) Serious Eye
Damage/Irritation | There is sufficient evidence to classify this material as eye damaging or irritating | | d) Respiratory or Skin
sensitisation | Based on available data, the classification criteria are not met. | | e) Mutagenicity | Based on available data, the classification criteria are not met. | | f) Carcinogenicity | Based on available data, the classification criteria are not met. | | g) Reproductivity | Based on available data, the classification criteria are not met. | | h) STOT - Single Exposure | There is sufficient evidence to classify this material as toxic to specific organs through single exposure | | i) STOT - Repeated Exposure | Based on available data, the classification criteria are not met. | | j) Aspiration Hazard | Based on available data, the classification criteria are not met. | #### Inhaled Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Ethers produce narcosis following inhalation. Inhalation of lower alkyl ethers may result in central nervous system depression or stimulation, intoxication, headache, dizziness, weakness, blurred vision, seizures and possible coma. Cardiovascular involvement may produce hypotension, bradycardia and cardiovascular collapse, whilst respiratory symptoms might include irritation of nose and throat, cough, laryngeal spasm, pharyngitis, irregular respiration, depression, pulmonary oedema and respiratory arrest. Nausea, vomiting and salivation might also indicate overexposure. Convulsions, respiratory distress or paralysis, asphyxia, pneumonitis, and unconsciousness are all serious manifestations of poisoning. Fatalities have been reported. Kidney and liver damage with interstitial cystitis may result from massive exposures. Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur. Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. WARNING: Intentional misuse by concentrating/inhaling contents may be lethal. Headache, fatigue, lassitude, irritability and gastrointestinal disturbances (e.g., nausea, anorexia and flatulence) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Transient memory loss, renal impairment, temporary confusion and some evidence of disturbance of liver function was reported in three workers overcome by gross exposure to xylene (10000 ppm). One worker died and autopsy revealed pulmonary congestion, oedema and focal alveolar haemorrhage. Volunteers inhaling xylene at 100 ppm for 5 to 6 hours showed changes in manual coordination reaction time and silvent ataxia. Tolerance developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose tissue. Chemwatch: **5445-14** Page **8** of **13**Version No: **3.1** #### CSS IMPACT-A Cold Gal Initial Date: **04/12/2020**Revision Date: **23/12/2022** Print Date: 23/12/2022 Xylene is a central nervous system depressant. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. #### Ingestion Skin Contact Ingestion of alkyl ethers may produce symptoms similar to those produced following inhalation. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Accidental ingestion of the material may be damaging to the health of the individual. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Contact with aluminas (aluminium oxides) may produce a form of irritant dermatitis accompanied by pruritus. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Spray mist may produce discomfort Alkyl ethers may defat and dehydrate the skin producing dermatoses. Absorption may produce headache, dizziness, and central nervous system depression. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with narmful effects. Examine the skin prior to the use of the narlied and ensure that any external damage is suitably protected. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. - The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either produces moderate inflammation of the skin in a substantial number of individuals
following direct contact, and/or - produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. ### Eve Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures.. Eye contact with alkyl ethers (vapours or liquid) may produce irritation, redness and lachrymation. Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated. #### Chronic On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Principal route of occupational exposure to the gas is by inhalation. Chronic exposure to alkyl ethers may result in loss of appetite, excessive thirst, fatigue, and weight loss Following an oral intake of extremely high doses of zinc (where 300 mg Zn/d – 20 times the US Recommended Dietary Allowance (RDA) – is a "low intake" overdose), nausea, vomiting, pain, cramps and diarrhea may occur. There is evidence of induced copper deficiency, alterations of blood lipoprotein levels, increased levels of LDL, and decreased levels of HDL at long-term intakes of 100 mg Zn/d. The USDA RDA is 15 mg Zn/d. There is also a condition called the "zinc shakes" or "zinc chills" or metal fume fever that can be induced by the inhalation of freshly formed zinc oxide formed during the welding of galvanized materials. Supplemental zinc can prevent iron absorption, leading to iron deficiency and possible peripheral neuropathy, with loss of sensation in extremities. Zinc is necessary for normal fetal growth and development. Fetal damage may result from zinc deficiency. Only one report in the literature suggested adverse developmental effects in humans due to exposure to excessive levels of zinc. Four women were given zinc supplements of 0.6 mg zinc/kg/day as zinc sulfate during the third trimester of pregnancy. Three of the women had premature deliveries, and one delivered a stillborn infant. However, the significance of these results cannot be determined because very few details were given regarding the study protocol, reproductive histories, and the nutritional status of the women. Other human studies have found no developmental effects in the newborns of mothers consuming 0.3 mg zinc/kg/day as zinc sulfate or zinc citrate or 0.06 mg zinc/kg/day as zinc aspartate during the last two trimesters. There has been a suggestion that increased serum zinc levels in pregnant women may be associated with an increase in neural tube defects, but others have failed to confirm this association. The developmental toxicity of zinc in experimental animals has been evaluated in a number of investigations. Exposure to high levels of zinc in the diet prior to and/or during gestation has been associated with increased fetal resorptions, reduced fetal weights, altered tissue concentrations of fetal iron and copper, and reduced growth in the offspring. Animal studies suggest that exposure to very high levels of dietary zinc is associated with reduced fetal weight, alopecia, decreased hematocrit, and copper deficiency in offspring. For example, second generation mice exposed to zinc carbonate during gestation and lactation (260 mg/kg/day in the maternal diet), and then continued on that diet for 8 weeks, had reduced body weight, alopecia, and signs of copper deficiency (e.g., lowered hematocrit and occasional achromotrichia [loss of hair colour]. Similarly, mink kits from dams that ingested a time-weighted-average dose of 20.8 mg zinc/kg/day as zinc sulfate also had alopecia and achromotrichia. It is likely that the alopecia resulted from zinc-induced copper deficiency, which is known to cause alopecia in monkeys. However, no adverse effects were observed in parental mice or mink. No effects on reproduction were reported in rats exposed to 50 mg zinc/kg/day as zinc carbonate; however, increased stillbirths were observed in rats exposed to 250 mg zinc/kg/day. Welding or flame cutting of metals with zinc or zinc dust coatings may result in inhalation of zinc oxide fume; high concentrations of zinc oxide fume may result in "metal fume fever"; also known as "brass chills", an industrial disease of short duration. [I.L.O] Symptoms include malaise, fever, weakness, nausea and may appear quickly if operations occur in enclosed or poorly ventilated areas. Genotoxicity studies conducted in a variety of test systems have failed to provide evidence for mutagenicity of zinc. However, there are Genotoxicity studies conducted in a variety of test systems have failed to provide evidence for mutagenicity of zinc. However, there are indications of weak clastogenic effects following zinc exposure. Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms. Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers. Xylene has been classed as a developmental toxin in some jurisdictions. Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex. **CSS IMPACT-A Cold Gal** **XYLENE & ZINC & ACETONE** TOXICITY Not Available # Page 9 of 13 CSS IMPACT-A Cold Gal Initial Date: **04/12/2020** Revision Date: **23/12/2022** Print Date: 10/09/2025 There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. IRRITATION Not Available Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS] **WARNING**: Aerosol containers may present pressure related hazards. | | TOXICITY | IRRITATION | | |----------------|--|--|--| | | Dermal (rabbit) LD50: >1700 mg/kg ^[2] | Eye (Human): 200ppm | | | | Inhalation (Rat) LC50: 5000 ppm4h ^[2] Eye (Rodent - rabbit): 5mg/24H - Severe | | | | | Oral (Mouse) LD50; 2119 mg/kg ^[2] Eye (Rodent - rabbit): 87mg - Mild | | | | xylene | | Eye: adverse effect observed (irritating) ^[1] | | | | | Skin (Rodent - rabbit): 100% - Moderate | | | | | Skin (Rodent - rabbit): 500mg/24H - Moderate | | | | | Skin (Rodent - rat): 60uL/8H - Mild | | | | | Skin: adverse effect observed (irritating) ^[1] | | | | TOXICITY | <u>'</u> | | | | | IRRITATION | | | zinc | Dermal (rabbit) LD50: 1130 mg/kg ^[2] | Eye: no adverse effect observed
(not irritating) ^[1] | | | | Oral (Rat) LD50: >2000 mg/kg ^[1] | Skin (Human): 300ug/3D (intermittent) - Mild | | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: 20000 mg/kg ^[2] | Eye (Human): 186300ppm - Mild | | | | Inhalation (Mouse) LC50: 44 mg/L4h ^[2] | Eye (Human): 500ppm | | | | Oral (Rat) LD50: 5800 mg/kg ^[2] | Eye (Rodent - rabbit): 10uL - Mild | | | | Crair (rair) 2500. 0000 mg/ng | Eye (Rodent - rabbit): 20mg - Severe | | | acetone | | Eye (Rodent - rabbit): 20mg/24H - Moderate | | | | | Eye: adverse effect observed (irritating) ^[1] | | | | | Skin (Rodent - rabbit): 395mg - Mild | | | | | Skin (Rodent - rabbit): 500mg/24H - Mild | | | | | | | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | dimethyl ether | TOXICITY | IRRITATION | | | | Inhalation (Rat) LC50: >20000 ppm4h ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | Legend: | Value obtained from Europe ECHA Registered Substan specified data extracted from RTECS - Register of Toxic E | nces - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise
Effect of chemical Substances | | | | Reproductive effector in rats | | | | | reproductive effector in rate | | | | XYLENE | The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. | | | | A | The substance is classified by IARC as Group 3: | | | | | NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. | | | | ZINC | No significant acute toxicological data identified in literatur | - | | | =• | For acetone: | | | | | The acute toxicity of acetone is low. Acetone is not a skin i | irritant or sensitiser but is a defatting agent to the skin. Acetone is an eye irritant. | | | | The subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the | | | | | oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with | | | | | histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with | | | | | macrocytic anaemia were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observed-effect-levels in the drinking water study were 1% for male rats (900 | | | | | mg/kg/d) and male mice (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental | | | | ACETONE | effects, a statistically significant reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at 15,665 mg/m3 and in rats at 26,100 mg/m3. The no-observable-effect level for developmental toxicity was | | | | | determined to be 5220 mg/m3 for both rats and mice. | | | | | Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m3, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control | | | | | animals. The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological | | | | | • | | | | | response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m3 have been reported. Neurobehavioral studies with acetone-exposed employees have recently shown that 8-hr exposures in excess of 2375 mg/m3 were not | | | Neurobehavioral studies with acetone-exposed employees have recently shown that 8-hr exposures in excess of 2375 mg/m3 were not associated with any dose-related changes in response time, vigilance, or digit span scores. Clinical case studies, controlled human volunteer studies, animal research, and occupational field evaluations all indicate that the NOAEL for this effect is 2375 mg/m3 or greater. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Chemwatch: 5445-14 Page 10 of 13 Version No: 3.1 **CSS IMPACT-A Cold Gal** Initial Date: 04/12/2020 Revision Date: 23/12/2022 Print Date: 10/09/2025 | Acute Toxicity | × | Carcinogenicity | × | |--------------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | ~ | | Respiratory or Skin
sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: X − Data either not available or does not fill the criteria for classification ✓ − Data available to make classification #### **SECTION 12 Ecological information** | Toxicity | | |----------|--| | | | | | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------------------|------------------|------------------------|-------------------------------|-----------------------|-----------------| | CSS IMPACT-A Cold Gal | Not
Available | Not Available | Not Available | Not
Available | Not
Availabl | | | Endpoint | Test Duration (hr) | Species | Value | Sourc | | | EC50 | 72h | Algae or other aquatic plants | 4.6mg/l | 2 | | xylene | EC50 | 48h | Crustacea | 1.8mg/l | 2 | | | NOEC(ECx) | 73h | Algae or other aquatic plants | 0.44mg/l | 2 | | | LC50 | 96h | Fish | 2.6mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | 0.005mg/l | 4 | | | EC50 | 48h | Crustacea | 0.06-
0.08mg/L | 4 | | zinc | EC50 | 96h | Algae or other aquatic plants | 0.042mg/L | 2 | | | NOEC(ECx) | 672h | Fish | 0.003mg/L | 4 | | | LC50 | 96h | Fish | 0.011-
0.014mg/L | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | 5600-
10000mg/L | 4 | | | EC50 | 48h | Crustacea | 6098.4mg/L | 5 | | acetone | EC50 | 96h | Algae or other aquatic plants | 9.873-
27.684mg/l | 4 | | | NOEC(ECx) | 12h | Fish | 0.001mg/L | 4 | | | LC50 | 96h | Fish | 3744.6-
5000.7mg/L | 4 | | | | | | Value | Source | | | Endpoint | Test Duration (hr) | Species | Value | | | | Endpoint
EC50 | Test Duration (hr) 48h | Species Crustacea | >4400mg/L | 2 | | dimethyl ether | | | • | | 2 | | dimethyl ether | EC50 | 48h | Crustacea | >4400mg/L | | Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |----------------|-----------------------------|----------------------------------| | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | | acetone | LOW (Half-life = 14 days) | MEDIUM (Half-life = 116.25 days) | | dimethyl ether | LOW | LOW | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |----------------|----------------------| | xylene | MEDIUM (BCF = 740) | | zinc | LOW (LogKOW = -0.47) | | acetone | LOW (BCF = 0.69) | | dimethyl ether | LOW (LogKOW = 0.1) | #### Mobility in soil Page **11** of **13** **CSS IMPACT-A Cold Gal** Initial Date: 04/12/2020 Revision Date: 23/12/2022 Print Date: 10/09/2025 | Ingredient | Mobility | |----------------|------------------------| | acetone | HIGH (Log KOC = 1.981) | | dimethyl ether | HIGH (Log KOC = 1.292) | #### **SECTION 13 Disposal considerations** #### Waste treatment methods - ▶ **DO NOT** allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Product / Packaging disposal - Where in doubt contact the responsible authority. Consult State Land Waste Management Authority for disposal. - ▶ Discharge contents of damaged aerosol cans at an approved site. - Allow small quantities to evaporate. - DO NOT incinerate or puncture aerosol cans. - ▶ Bury residues and emptied aerosol cans at an approved site. #### **SECTION 14 Transport information** #### **Labels Required** #### Marine Pollutant HAZCHEM Not Applicable #### Land transport (ADG) | 14.1. UN number or ID number | 1950 | | | |------------------------------------|-------------------------------------|---|--| | 14.2. UN proper shipping name | AEROSOLS | | | | 14.3. Transport hazard class(es) | Class
Subsidiary Hazard | | | | 14.4. Packing group | Not Applicable | | | | 14.5. Environmental hazard | Environmentally hazardous | | | | 14.6. Special precautions for user | Special provisions Limited quantity | Special provisions 63 190 277 327 344 381 | | #### Air transport (ICAO-IATA / DGR) | | _ | | | | |------------------------------------|---|-----------------------------|-------------------|--| | 14.1. UN number | 1950 | | | | | 14.2. UN proper shipping name | Aerosols, flammable (engine starting fluid) | | | | | | ICAO/IATA Class | 2.1 | | | | 14.3. Transport hazard class(es) | ICAO / IATA Subsidiary Hazard | Not Applicable | | | | Chass(cs) | ERG Code | 10L | | | | 14.4. Packing group | Not Applicable | | | | | 14.5. Environmental hazard | Environmentally hazardous | | | | | | Special provisions | | A1 A145 A167 A802 | | | | Cargo Only Packing Instructions | | 203 | | | | Cargo
Only Maximum Qty / Pack | | 150 kg | | | 14.6. Special precautions for user | Passenger and Cargo Packing Instructions | | Forbidden | | | 4301 | Passenger and Cargo Maximum Qty / Pack | | Forbidden | | | | Passenger and Cargo Limited Qu | antity Packing Instructions | Forbidden | | | | Passenger and Cargo Limited Ma | aximum Qty / Pack | Forbidden | | | | | | | | # Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 1950 | |-------------------------------|----------| | 14.2. UN proper shipping name | AEROSOLS | Chemwatch: 5445-14 Page 12 of 13 Version No: 3.1 Initial Date: 04/12/2020 Revision Date: 23/12/2022 Print Date: 10/09/2025 #### **CSS IMPACT-A Cold Gal** | 14.3. Transport hazard class(es) | IMDG Class IMDG Subsidiary Ha | zard Not Applicable | | |------------------------------------|--|---|--| | 14.4. Packing group | Not Applicable | | | | 14.5 Environmental hazard | Marine Pollutant | | | | 14.6. Special precautions for user | EMS Number Special provisions Limited Quantities | F-D, S-U
63 190 277 327 344 381 959
1000 ml | | #### 14.7. Maritime transport in bulk according to IMO instruments #### 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |----------------|---------------| | xylene | Not Available | | zinc | Not Available | | acetone | Not Available | | dimethyl ether | Not Available | #### 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |----------------|---------------| | xylene | Not Available | | zinc | Not Available | | acetone | Not Available | | dimethyl ether | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### xylene is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic #### zinc is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) #### acetone is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australian Inventory of Industrial Chemicals (AIIC) # dimethyl ether is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australian Inventory of Industrial Chemicals (AIIC) #### **Additional Regulatory Information** Not Applicable | National Inventory Status | | | | |---|---|--|--| | National Inventory | Status | | | | Australia - AIIC / Australia Non-
Industrial Use | Yes | | | | Canada - DSL | Yes | | | | Canada - NDSL | No (xylene; zinc; acetone; dimethyl ether) | | | | China - IECSC | Yes | | | | Europe - EINEC / ELINCS /
NLP | Yes | | | | Japan - ENCS | No (zinc) | | | | Korea - KECI | Yes | | | | New Zealand - NZIoC | Yes | | | | Philippines - PICCS | Yes | | | | USA - TSCA | All chemical substances in this product have been designated as TSCA Inventory 'Active' | | | # Page 13 of 13 **CSS IMPACT-A Cold Gal** Initial Date: 04/12/2020 Revision Date: 23/12/2022 Print Date: 10/09/2025 | National Inventory | Status | | |---|--|--| | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | UAE - Control List
(Banned/Restricted
Substances) | No (xylene; zinc; acetone; dimethyl ether) | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | #### **SECTION 16 Other information** | Revision Date | 23/12/2022 | |---------------|------------| | Initial Date | 04/12/2020 | #### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|---| | 2.1 | 04/12/2020 | Toxicological information - Chronic Health | | 3.1 | 23/12/2022 | Classification review due to GHS Revision change. | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ► IARC: International Agency for Research on Cancer - ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ▶ TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ▶ ES: Exposure Standard - OSF: Odour Safety Factor - NOAEL: No Observed Adverse Effect Level - ▶ LOAEL: Lowest Observed Adverse Effect Level - TLV: Threshold Limit Value - LOD: Limit Of Detection - OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - BEI: Biological Exposure Index - ▶ DNEL: Derived No-Effect Level - ▶ PNEC: Predicted no-effect concentration - MARPOL: International Convention for the Prevention of Pollution from Ships IMSBC: International Maritime Solid Bulk Cargoes Code - IGC: International Gas Carrier Code - ▶ IBC: International Bulk Chemical Code - AIIC: Australian Inventory of Industrial Chemicals - DSL: Domestic Substances List - NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ▶ ELINCS: European List of Notified Chemical Substances - NLP: No-Longer PolymersENCS: Existing and New Chemical Substances Inventory - ▶ KECI: Korea Existing Chemicals Inventory - NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - ► TSCA: Toxic Substances Control Act - TCSI: Taiwan Chemical Substance Inventory - INSQ: Inventario Nacional de Sustancias Químicas - NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.